471 research outputs found

    Antibiotics for sore throat

    Get PDF
    Background: Sore throat is a common reason for people to present for medical care. Although it remits spontaneously, primary care doctors commonly prescribe antibiotics for it. Objectives: To assess the benefits of antibiotics for sore throat for patients in primary care settings. Search methods: We searched CENTRAL 2013, Issue 6, MEDLINE (January 1966 to July week 1, 2013) and EMBASE (January 1990 to July 2013). Selection criteria: Randomised controlled trials (RCTs) or quasi‐RCTs of antibiotics versus control assessing typical sore throat symptoms or complications. Data collection and analysis: Two review authors independently screened studies for inclusion and extracted data. We resolved differences in opinion by discussion. We contacted trial authors from three studies for additional information. Main results: We included 27 trials with 12,835 cases of sore throat. We did not identify any new trials in this 2013 update. 1. Symptoms - Throat soreness and fever were reduced by about half by using antibiotics. The greatest difference was seen at day three. The number needed to treat to benefit (NNTB) to prevent one sore throat at day three was less than six; at week one it was 21. 2. Non‐suppurative complications - The trend was antibiotics protecting against acute glomerulonephritis but there were too few cases to be sure. Several studies found antibiotics reduced acute rheumatic fever by more than two‐thirds within one month (risk ratio (RR) 0.27; 95% confidence interval (CI) 0.12 to 0.60). 3. Suppurative complications - Antibiotics reduced the incidence of acute otitis media within 14 days (RR 0.30; 95% CI 0.15 to 0.58); acute sinusitis within 14 days (RR 0.48; 95% CI 0.08 to 2.76); and quinsy within two months (RR 0.15; 95% CI 0.05 to 0.47) compared to those taking placebo. 4. Subgroup analyses of symptom reduction - Antibiotics were more effective against symptoms at day three (RR 0.58; 95% CI 0.48 to 0.71) if throat swabs were positive for Streptococcus, compared to RR 0.78; 95% CI 0.63 to 0.97 if negative. Similarly at week one the RR was 0.29 (95% CI 0.12 to 0.70) for positive and 0.73 (95% CI 0.50 to 1.07) for negative Streptococcus swabs. Authors' conclusions: Antibiotics confer relative benefits in the treatment of sore throat. However, the absolute benefits are modest. Protecting sore throat sufferers against suppurative and non‐suppurative complications in high‐income countries requires treating many with antibiotics for one to benefit. This NNTB may be lower in low‐income countries. Antibiotics shorten the duration of symptoms by about 16 hours overall.Griffith Health, School of MedicineFull Tex

    Acute respiratory infections

    Get PDF

    General practice research

    Get PDF

    Feedback of evidence into practice

    Get PDF
    Concern about risks associated with medical care has led to increasing interest in quality improvement processes. Most quality initiatives derive from manufacturing, where they have worked well in improving quality by small, steady increments. Adaptations of quality processes to the healthcare environment have included variations emphasising teamwork; large, ambitious increments in targets; and unorthodox approaches. Feedback of clinical information to clinicians is a central process in many quality improvement activities. It is important to choose feedback data that support the objectives for quality improvement - and not just what is expedient. Clinicians need to be better educated about the quality improvement process to maintain the quality of their care

    Educational interventions to improve people's understanding of key concepts in assessing the effects of health interventions: a systematic review

    Get PDF
    Abstract Background Health information is readily accessible but is of variable quality. General knowledge about how to assess whether claims about health interventions are trustworthy is not common, so people’s health decisions can be ill-informed, unnecessarily costly and even unsafe. This review aims to identify and evaluate studies of educational interventions designed to improve people’s understanding of key concepts for evaluating claims about the effects of health interventions. Methods/Design We searched multiple electronic databases and sources of grey literature. Inclusion criteria included all study types that included a comparison, any participants (except health professionals or health professional students) and educational interventions aimed at improving people’s understanding of one or more of the key concepts considered necessary for assessing health intervention claims. Knowledge and/or understanding of concepts or skills relevant to evaluating health information were our primary outcome measures. Secondary outcomes included behaviour, confidence, attitude and satisfaction with the educational interventions. Two authors independently screened search results, assessed study eligibility and risk of bias and extracted data. Results were summarised using descriptive synthesis. Results Among 24 eligible studies, 14 were randomised trials and 10 used other study designs. There was heterogeneity across study participants, settings and educational intervention type, content and delivery. The risk of bias was high in at least one domain for all randomised studies. Most studies measured outcomes immediately after the educational intervention, with few measuring later. In most of the comparisons, measures of knowledge and skills were better among those who had received educational interventions than among controls, and some of these differences were statistically significant. The effects on secondary outcomes were inconsistent. Conclusions Educational interventions to improve people’s understanding of key concepts for evaluating health intervention claims can improve people’s knowledge and skills, at least in the short term. Effects on confidence, attitude and behaviour are uncertain. Many of the studies were at moderate or greater risk of bias. Improvements in study quality, consistency of outcome measures and measures of longer-term effects are needed to improve confidence in estimates of the effects of educational interventions to improve people’s understanding of key concepts for evaluating health intervention claims. Systematic review registration PROSPERO CRD4201603310

    What is the effect of a formalised trauma tertiary survey procedure on missed injury rates in multi-trauma patients? Study protocol for a randomised controlled trial

    Get PDF
    Background: Missed injury is commonly used as a quality indicator in trauma care. The trauma tertiary survey (TTS) has been proposed to reduce missed injuries. However a systematic review assessing the effect of the TTS on missed injury rates in trauma patients found only observational studies, only suggesting a possible increase in early detection and reduction in missed injuries, with significant potential biases. Therefore, more robust methods are necessary to test whether implementation of a formal TTS will increase early in-hospital injury detection, decrease delayed diagnosis and decrease missed injuries after hospital discharge. Methods/Design: We propose a cluster-randomised, controlled trial to evaluate trauma care enhanced with a formalised TTS procedure. Currently, 20 to 25% of trauma patients routinely have a TTS performed. We expect this to increase to at least 75%. The design is for 6,380 multi-trauma patients in approximately 16 hospitals recruited over 24 months. In the first 12 months, patients will be randomised (by hospital) and allocated 1:1 to receive either the intervention (Group 1) or usual care (Group 2). The recruitment for the second 12 months will entail Group 1 hospitals continuing the TTS, and the Group 2 hospitals beginning it to enable estimates of the persistence of the intervention. The intervention is complex: implementation of formal TTS form, small group education, and executive directive to mandate both. Outcome data will be prospectively collected from (electronic) medical records and patient (telephone follow-up) questionnaires. Missed injuries will be adjudicated by a blinded expert panel. The primary outcome is missed injuries after hospital discharge; secondary outcomes are maintenance of the intervention effect, in-hospital missed injuries, tertiary survey performance rate, hospital and ICU bed days, interventions required for missed injuries, advanced diagnostic imaging requirements, readmissions to hospital, days of work and quality of life (EQ-5D-5 L) and mortality. Discussion: The findings of this study may alter the delivery of international trauma care. If formal TTS is (cost-) effective this intervention should be implemented widely. If not, where already partly implemented, it should be abandoned. Study findings will be disseminated widely to relevant clinicians and health funders.Griffith Health, School of MedicineFull Tex

    Interventions to facilitate shared decision making to address antibiotic use for acute respiratory infections in primary care

    Get PDF
    Background: Shared decision making is an important component of patient-centred care. It is a set of communication and evidence-based practice skills that elicits patients' expectations, clarifies any misperceptions and discusses the best available evidence for benefits and harms of treatment. Acute respiratory infections (ARIs) are one of the most common reasons for consulting in primary care and obtaining prescriptions for antibiotics. However, antibiotics offer few benefits for ARIs, and their excessive use contributes to antibiotic resistance - an evolving public health crisis. Greater explicit consideration of the benefit-harm trade-off within shared decision making may reduce antibiotic prescribing for ARIs in primary care. Objectives: To assess whether interventions that aim to facilitate shared decision making increase or reduce antibiotic prescribing for ARIs in primary care. Search methods: We searched CENTRAL (2014, Issue 11), MEDLINE (1946 to November week 3, 2014), EMBASE (2010 to December 2014) and Web of Science (1985 to December 2014). We searched for other published, unpublished or ongoing trials by searching bibliographies of published articles, personal communication with key trial authors and content experts, and by searching trial registries at the National Institutes of Health and the World Health Organization. Selection criteria: Randomised controlled trials (RCTs) (individual level or cluster-randomised), which evaluated the effectiveness of interventions that promote shared decision making (as the focus or a component of the intervention) about antibiotic prescribing for ARIs in primary care. Data collection and analysis: Two review authors independently extracted and collected data. Antibiotic prescribing was the primary outcome, and secondary outcomes included clinically important adverse endpoints (e.g. re-consultations, hospital admissions, mortality) and process measures (e.g. patient satisfaction). We assessed the risk of bias of all included trials and the quality of evidence. We contacted trial authors to obtain missing information where available. Main results: We identified 10 published reports of nine original RCTs (one report was a long-term follow-up of the original trial) in over 1100 primary care doctors and around 492,000 patients. The main risk of bias came from participants in most studies knowing whether they had received the intervention or not, and we downgraded the rating of the quality of evidence because of this. We meta-analysed data using a random-effects model on the primary and key secondary outcomes and formally assessed heterogeneity. Remaining outcomes are presented narratively. There is moderate quality evidence that interventions that aim to facilitate shared decision making reduce antibiotic use for ARIs in primary care (immediately after or within six weeks of the consultation), compared with usual care, from 47% to 29%: risk ratio (RR) 0.61, 95% confidence interval (CI) 0.55 to 0.68. Reduction in antibiotic prescribing occurred without an increase in patient-initiated re-consultations (RR 0.87, 95% CI 0.74 to 1.03, moderate quality evidence) or a decrease in patient satisfaction with the consultation (OR 0.86, 95% CI 0.57 to 1.30, low quality evidence). There were insufficient data to assess the effects of the intervention on sustained reduction in antibiotic prescribing, adverse clinical outcomes (such as hospital admission, incidence of pneumonia and mortality), or measures of patient and caregiver involvement in shared decision making (such as satisfaction with the consultation; regret or conflict with the decision made; or treatment compliance following the decision). No studies assessed antibiotic resistance in colonising or infective organisms. Authors' conclusions: Interventions that aim to facilitate shared decision making reduce antibiotic prescribing in primary care in the short term. Effects on longer-term rates of prescribing are uncertain and more evidence is needed to determine how any sustained reduction in antibiotic prescribing affects hospital admission, pneumonia and death

    Delayed antibiotic prescriptions for respiratory infections

    Get PDF
    Background: Concerns exist regarding antibiotic prescribing for respiratory tract infections (RTIs) owing to adverse reactions, cost, and antibacterial resistance. One proposed strategy to reduce antibiotic prescribing is to provide prescriptions, but to advise delay in antibiotic use with the expectation that symptoms will resolve first. This is an update of a Cochrane Review originally published in 2007, and updated in 2010 and 2013. Objectives: To evaluate the effects on clinical outcomes, antibiotic use, antibiotic resistance, and patient satisfaction of advising a delayed prescription of antibiotics in respiratory tract infections. Search methods: For this 2017 update we searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, Issue 4, 2017), which includes the Cochrane Acute Respiratory Infection Group's Specialised Register; Ovid MEDLINE (2013 to 25 May 2017); Ovid Embase (2013 to 2017 Week 21); EBSCO CINAHL Plus (1984 to 25 May 2017); Web of Science (2013 to 25 May 2017); WHO International Clinical Trials Registry Platform (1 September 2017); and ClinicalTrials.gov (1 September 2017). Selection criteria: Randomised controlled trials involving participants of all ages defined as having an RTI, where delayed antibiotics were compared to immediate antibiotics or no antibiotics. We defined a delayed antibiotic as advice to delay the filling of an antibiotic prescription by at least 48 hours. We considered all RTIs regardless of whether antibiotics were recommended or not. Data collection and analysis: We used standard Cochrane methodological procedures. Three review authors independently extracted and collated data. We assessed the risk of bias of all included trials. We contacted trial authors to obtain missing information. Main results: For this 2017 update we added one new trial involving 405 participants with uncomplicated acute respiratory infection. Overall, this review included 11 studies with a total of 3555 participants. These 11 studies involved acute respiratory infections including acute otitis media (three studies), streptococcal pharyngitis (three studies), cough (two studies), sore throat (one study), common cold (one study), and a variety of RTIs (one study). Five studies involved only children, two only adults, and four included both adults and children. Six studies were conducted in a primary care setting, three in paediatric clinics, and two in emergency departments. Studies were well reported, and appeared to be of moderate quality. Randomisation was not adequately described in two trials. Four trials blinded the outcomes assessor, and three included blinding of participants and doctors. We conducted meta-analysis for antibiotic use and patient satisfaction. We found no differences among delayed, immediate, and no prescribed antibiotics for clinical outcomes in the three studies that recruited participants with cough. For the outcome of fever with sore throat, three of the five studies favoured immediate antibiotics, and two found no difference. For the outcome of pain related to sore throat, two studies favoured immediate antibiotics, and three found no difference. One study compared delayed antibiotics with no antibiotic for sore throat, and found no difference in clinical outcomes. Three studies included participants with acute otitis media. Of the two studies with an immediate antibiotic arm, one study found no difference for fever, and the other study favoured immediate antibiotics for pain and malaise severity on Day 3. One study including participants with acute otitis media compared delayed antibiotics with no antibiotics and found no difference for pain and fever on Day 3. Two studies recruited participants with common cold. Neither study found differences for clinical outcomes between delayed and immediate antibiotic groups. One study favoured delayed antibiotics over no antibiotics for pain, fever, and cough duration (moderate quality evidence for all clinical outcomes - GRADE assessment). There were either no differences for adverse effects or results favoured delayed antibiotics over immediate antibiotics (low quality evidence - to GRADE assessment) with no significant differences in complication rates. Delayed antibiotics resulted in a significant reduction in antibiotic use compared to immediate antibiotics prescription (odds ratio (OR) 0.04, 95% confidence interval (CI) 0.03 to 0.05). However, a delayed antibiotic was more likely to result in reported antibiotic use than no antibiotics (OR 2.55, 95% CI 1.59 to 4.08) (moderate quality evidence - GRADE assessment). Patient satisfaction favoured delayed over no antibiotics (OR 1.49, 95% CI 1.08 to 2.06). There was no significant difference in patient satisfaction between delayed antibiotics and immediate antibiotics (OR 0.65, 95% CI 0.39 to 1.10) (moderate quality evidence - GRADE assessment). None of the included studies evaluated antibiotic resistance. Authors' conclusions: For many clinical outcomes, there were no differences between prescribing strategies. Symptoms for acute otitis media and sore throat were modestly improved by immediate antibiotics compared with delayed antibiotics. There were no differences in complication rates. Delaying prescribing did not result in significantly different levels of patient satisfaction compared with immediate provision of antibiotics (86% versus 91%) (moderate quality evidence). However, delay was favoured over no antibiotics (87% versus 82%). Delayed antibiotics achieved lower rates of antibiotic use compared to immediate antibiotics (31% versus 93%) (moderate quality evidence). The strategy of no antibiotics further reduced antibiotic use compared to delaying prescription for antibiotics (14% versus 28%). Delayed antibiotics for people with acute respiratory infection reduced antibiotic use compared to immediate antibiotics, but was not shown to be different to no antibiotics in terms of symptom control and disease complications. Where clinicians feel it is safe not to prescribe antibiotics immediately for people with respiratory infections, no antibiotics with advice to return if symptoms do not resolve is likely to result in the least antibiotic use while maintaining similar patient satisfaction and clinical outcomes to delaying prescription of antibiotics. Where clinicians are not confident in using a no antibiotic strategy, a delayed antibiotics strategy may be an acceptable compromise in place of immediate prescribing to significantly reduce unnecessary antibiotic use for RTIs, and thereby reduce antibiotic resistance, while maintaining patient safety and satisfaction levels. Editorial note: As a living systematic review, this review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review

    Corticosteroids for the common cold

    Get PDF
    BACKGROUND: The common cold is a frequent illness, which, although benign and self limiting, results in many consultations to primary care and considerable loss of school or work days. Current symptomatic treatments have limited benefit. Corticosteroids are an effective treatment in other upper respiratory tract infections and their anti‐inflammatory effects may also be beneficial in the common cold. This updated review has included one additional study. OBJECTIVES: To compare corticosteroids versus usual care for the common cold on measures of symptom resolution and improvement in children and adults. SEARCH METHODS: We searched Cochrane Central Register of Controlled Trials (CENTRAL 2015, Issue 4), which includes the Acute Respiratory Infections (ARI) Group's Specialised Register, the Database of Reviews of Effects (DARE) (2015, Issue 2), NHS Health Economics Database (2015, Issue 2), MEDLINE (1948 to May week 3, 2015) and EMBASE (January 2010 to May 2015). SELECTION CRITERIA: Randomised, double‐blind, controlled trials comparing corticosteroids to placebo or to standard clinical management. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed trial quality. We were unable to perform meta‐analysis and instead present a narrative description of the available evidence. MAIN RESULTS: We included three trials (353 participants). Two trials compared intranasal corticosteroids to placebo and one trial compared intranasal corticosteroids to usual care; no trials studied oral corticosteroids. In the two placebo‐controlled trials, no benefit of intranasal corticosteroids was demonstrated for duration or severity of symptoms. The risk of bias overall was low or unclear in these two trials. In a trial of 54 participants, the mean number of symptomatic days was 10.3 in the placebo group, compared to 10.7 in those using intranasal corticosteroids (P value = 0.72). A second trial of 199 participants reported no significant differences in the duration of symptoms. The single‐blind trial in children aged two to 14 years, who were also receiving oral antibiotics, had inadequate reporting of outcome measures regarding symptom resolution. The overall risk of bias was high for this trial. Mean symptom severity scores were significantly lower in the group receiving intranasal steroids in addition to oral amoxicillin. One placebo‐controlled trial reported the presence of rhinovirus in nasal aspirates and found no differences. Only one of the three trials reported on adverse events; no differences were found. Two trials reported secondary bacterial infections (one case of sinusitis, one case of acute otitis media; both in the corticosteroid groups). A lack of comparable outcome measures meant that we were unable to combine the data. AUTHORS' CONCLUSIONS: Current evidence does not support the use of intranasal corticosteroids for symptomatic relief from the common cold. However, there were only three trials, one of which was very poor quality, and there was limited statistical power overall. Further large, randomised, double‐blind, placebo‐controlled trials in adults and children are required to answer this question
    corecore